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Abstract-A heat and mass transfer problem of geophysical interest involving coexisting phases is studied. 
The dynamical system considered is the atmosphere-hydrosphere-cryosphere, wherein the spatial degrees of 
freedom along the vertical and longitudinal directions have been lumped. The reduced one-dimensional 
system is modelled by a simple, yearly averaged, energy balance model taking into account the coupling 
between the two phases present : the ice sheets and the ocean. This is done self-consistently by introducing a 
Stefan type of boundary condition at the interface. The resulting balance equation is linearized and solved 
analytically using mode truncation and Galerkin’s method. The analysis is centered on the stability of the 
present-day climatic regime with respect to small excursions of the ice boundary. Special emphasis is put on 

the thermodynamic aspects, as well as on the characteristic time scales of evolution. 

NOMENCLATURE 

4 affinity of the phase transformation ; 
a(x, x,), absorption function; 

E, 
99 

h, 
J, 
L, rTP 
I, 
Q, 
R 
S(x), 
S, 
T, 
V, 

X, 

53 

heat capacity; 
eddy diffusivity ; 
internal energy ; 
acceleration of gravity ; 
height of ice sheet; 
energy flux ; 
heat of melting ice; 
width of ice sheet ; length along a meridian ; 
solar constant divided by 4 ; 
radius of the earth ; 
normalized distribution of solar radiation ; 
entropy ; 
surface temperature ; 
section of ice sheet along the meridional 
direction ; 
sine of the latitude; 
sine of the latitude of the ice boundary. 

Greek symbols 

a, albedo ; 
% latitude ; 
2, parameter given by I = (4/3) r/pg ; 

P? mass density of ice; 

7, yield stress of ice; 

4, latitude of the equatorward tip of the ice 
sheet in radians ; 

4 MY latitude of the poleward tip of the ice sheet 
in radians. 

1. INTRODUCTION 

IT IS WELL known that most situations involving energy 
transfer between two coexisting phases separated by 
an interface, give rise to free boundary value problems 
[l]. Typical problems of this kind refer to rather 
simple geometries with a high degree of symmetry: 
Solidification of a semi-infinite body, of a plate, a 
sphere, a cylinder, and so forth. 

Large scale geophysical phenomena provide 
beautiful examples of heat and mass transfer in a 
somewhat less traditional context. The present paper is 
devoted to one such problem, namely, the interaction 
between an ice cap and the earth-atmosphere system. 
Interactions of this sort are known to play an 
important role in climate dynamics, especially in 
connection with the onset of glaciation cycles. 

The mathematical modelling of the climate system 
received considerable attention recently [2]. One ofthe 
most powerful tools has been the systematic use of 
simple energy balance models where an average over 
the longitudinal and vertical coordinates is taken, and 
the only energy exchanges considered explicitly are 
along the meridional direction. Such models are 
reasonably tractable, and predict a variety of 
bifurcation phenomena associated with transitions 
between present day and less favorable climatic 
conditions [3]. They all involve a discontinuous 
element which marks the beginning of an ice sheet. 
Aside from this discontinuity, the dynamical aspects of 
the interaction between the ice sheet and the ice free 
part of the earth are discarded. It is only when the 
explicit ice sheet dynamics, and hence the coupling 
between energy balance and mass balance of the 
glaciers is considered, that one takes such interactions 
into account [4, 51. On the other hand, the explicit 
form of the coupling requires a number of additional 
parameterizations of such quantities as the ablation 
rate of the ice sheet, the snow fall etc. Although 
plausible, such parameterizations certainly go beyond 
the basic assumptions underlying the balance 
equations. 

The main hypothesis of the present paper is that the 
interaction between an ice sheet and the ice free part of 
the earth-atmosphere system can be viewed as a free 
boundary value problem. In Section 2 a l-dim. energy 
balance model is introduced, and some problems 
related to the time scales of the evolution predicted by 
this model are raised. In Section 3 we construct the 
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augmented model in which the position of the ice edge 
is related, self-consistently, to the energy balance 
equation through a Stefan type of boundary condition. 
In Sections 4 and 5 a linearized analysis around the 
present-day conditions using, respectively, mode trun- 
cation and Galerkin’s method is outlined. Section 6 is 
devoted to the thermodynamic aspects, particularly 
the entropy and excess entropy balance equations as 
well as to the presentation of the main conclusions. 

2. THE MODEL 

We begin with the yearly averaged energy balance 
equation of a column of unit surface extending from 
the top of the atmosphere until a certain ocean depth 
(mixed layer) within which most of the transport 
processes are assumed to take place. Quite generally, 
one can write 

?E 
- = Sources - Sinks - div J 
at (1) 

where E is the internal energy and J the energy flux. In 
principle, equation (1) is coupled to the momentum 
and mass transfer equations. However, because of the 
wide separation of the characteristic times associated 
with the vertical and longitudinal directions on the one 
side, and the meridional direction on the other side, it 
has been suggested [6, 71 that equation (1) can be 
averaged over the first two ones. In the resulting l-dim. 
model (see Fig. l), North [8] was able to obtain a 
reasonably satisfactory representation of the present- 
day meridional temperature distribution by modelling 
J as a (turbulent) diffusive heat transfer: 

or 

.I, = -I)’ (VT), 

J, = - $1 - .y g. (2) 

Here D’is the eddy diffusivity, R the radius of the earth, 
T the surface temperature and x the sine of the latitude, 
x = sin cp. 

Within the same approximation the remaining 
terms in (1) are treated as follows : dE is replaced by dT 
through the thermodynamic relation 

dE = cdl- (3a) 

where c is a heat capacity (or thermal inertia 
coefficient). The source term is written as 

Source = QS(x) a(x, x,) (3b) 

where Q is the solar constant divided by 4, giving the 
value of the incoming solar radiative flux averaged over 
a year and over the surface of the earth (the factor l/4 
results from the earth’s sphericity). S(x) is the 
normalized distribution of solar radiation determined 
by astronomical calculations, and a(x, x,) is the 
absorption function, written as 1 - a(x, x,), CI being the 
albedo. In climate modelling it is common to represent 

a(x, x,) as a function which changes in a step-like 
fashion in the vicinity of the ice edge, x,, due to the 
marked difference between the reflectivities of ice and 
ocean or land. In particular, it is customary to consider 
symmetric hemispheres and write : 

a(x, x,) = 1 PO x > x, 

c(e + u2 P, 
(3c) 

x < x, 

where & is the absorption coefficient over ice or snow 
when .50?: covered with clouds, and a,, t12 are the 
absorption coefficients over ice free areas obtained 
after analyzing the albedo distribution by Legendre 
series. Finally, the sink term expresses the effect of the 
infrared cooling and is approximated by 

Sink = I(x) = A + B T(x) (34 

provided that the range of variation of T around a 
reference value is not very high. 

On substituting equation (2) as well as equations 
(3a)-(3d) into the energy balance equation (1) and 
setting D = D’,/R2 we obtain 

c t$ = Q S(x) a(x, x,) - (A + B-f(x)) 

+ & 
i 

a-(x) 
(1 - xZ)Dr 

I 
. (4) 

In order to have a closed form equation we still have 
to relate the position of the ice edge, xs, to the 
temperature T. Following Budyko [6] we require 
that : 

T(x) > - 10°C no ice present, 
\ (5) 

T(x) < - 10°C permanent ice present. _J 

Equations (4) and (5) constitute a well posed problem 
if, in addition, appropriate boundary conditions are 
given at x = 0 and x = f 1. In the symmetric 
hemisphere case here considered the appropriate 
conditions are zero energy flux at the pole and across 
the equator. Finally, in all studies performed so far a 
physically motivated condition has been added, 
namely that the temperature and its gradient, giving 
the heat Bux, must be continuous at the ice edge. 

FIG. 1. 
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As mentioned in the introduction, the analysis of 
equations (4)-(5) gives rise to an amazing variety of 
bifurcation phenomena corresponding to climatic 
transitions. Rather than dwell on these results however, 
we prefer to insist on the limitations arising from some 
of the assumptions adopted in this formalism, which in 
our opinion are particularly stringent. 

As is known, one of the ubiquitous features of the 
climatic system is the coexistence of processes 
characterized by widely separated time scales. Thus, 
our usual perception of climate is associated with 
variations of temperature, humidity etc. on a scale of a 
few years ; the atmosphere-hydrosphereecryosphere 
system brings about new features with characteristic 
scales of 103P104 yr, the onset of a glaciation time; 
finally, in a longer time scale the interaction with 
externalvariations (orbital parameters, solar output or 
geological environment) begin to play a non-negligible 
role [9]. 

Now, in the modelling based on equations (4) and 
(5) these various processes have been completely 
decoupled. More specifically, the assumption of con- 
tinuous temperature gradient across the ice edge 
implies equality of the heat fluxes on both sides. As a 
result, the ice edge follows passively the temperature 
variations even if the latter occur with the characteris- 
tic relaxation time c/B ofequation (4) which is typically 
of the order of a few years. This is clearly wrong, as the 
enormous inertia of the ice sheets should imply a scale 
of variation of the ice edge of at least several hundred 
years. 

As mentioned in the introduction, the most 
satisfactory way to account correctly for the 
atmosphere-hydrosphereecryosphere coupling would 
be to appeal both to the energy balance equation and 
to the mass balance of the ice sheets. However, in view 
of the complexity of this project, and the concomitant 
uncertainties involved in the parameterization of the 
various quantities involved in the theory, we adopt 
hereafter an alternative point of view. We show that 
independently of explicit ice sheet dynamics, there 
exists a completely self-consistent coupling mechanism 
between atmosphere, hydrosphere and cryosphere 
which is based solely on the energy balance equation, 
and which is sufficient to generate the long time scale 
missing in equations (4) and (5). 

3. AN AUGMENTED ENERGY BALANCE MODEL 

The starting point is to realise that the continuity of 
the flux across the ice edge may still be a satisfactory 
assumption for steady states, but should break down 
completely for time dependent ones. As is well known 
from free boundary value problems, the excess 
between “right” and “left” fluxes around a boundary 
separating two phases can serve for the advance of one 
of them at the expense of the other [l]. Let L denote 
the heat of melting of ice per unit mass, p its mass 
density, and V the section of the ice sheet along the 
meridional direction. Then, remembering that the 

origin of the coordinate system in the energy balance 
equation is at the equator, 

J&x, - E) - J&x, + E) = Lp g (6) 

where E (E > 0) denotes a small distance from the ice 
boundary x,. 

We proceed to the evaluation of dV/dt. If present- 
day configurations of ice sheets are to be modelled, two 
different cases can be envisaged: (i) a full ice cap 
centered at the pole (southern hemisphere), and (ii) a 
circumpolar ring of ice delimited by the presence of sea 
(northern hemisphere). 

According to Weertman [lo], the ice sheet flows as a 
perfectly plastic substance and the flow is only in the 
meridional direction. It follows that the ice sheet 
profile remains always parabolic around its centre of 
symmetry. Choosing the latter as the origin of a local 
coordinate system : 

h(u) = 11’2 (l - 1I41)1’2 

where h is the elevation above sea level, 1 is the width of 
the sheet and i. a parameter depending on the yield 
stress of ice. 

Consider first the case of a full ice cap. The cross- 
section V is then 

Hence 

Now, dl/dt can be related straightforwardly to the 
mation of the ice boundary x,, as described in the 
original coordinate system, by (see Fig. 2a) 

dl R dx s 
dt = - (l-~f)“~ dt’ 

(104 

1= R (t - 4,) 
v / 

4, being the latitude in radians (4, = arcsin x,). 
We next consider the case of a circumpolar ring of 

ice. Equation (7) remains unaltered provided that I is 
now interpreted as the half width. Thus, 

C’b) 

The connection between this expression and x, 
becomes now more involved. From Fig. 2(b) we have 

dl 1 R dx 

dt= 
s 

2 (1 -x$” dt ’ (lob) 

where & is the latitude of the poleward tip of the sheet. 
Using equations (6)-(10) we may finally write the 
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(b) 

FIG. 2.-Schematic representation of hemispherical ice sheet models (a) full ice cap, (b) a circumpolar ring of ice. 

energy balance equation taking ice melting or advance the phase transition. 
into account in the form The problem we now face is to solve equation (11) 

subject to the additional boundary conditions 

cg = QS(x)a(x, x,) - [A + BT(x)] 
mentioned in Section 2, namely 

J,(O) = J,(l) = 0, (16a) 

1 
- LP h,r, dt dxSb(x-x,), (11) 

~-(X,-E) = T(x,+E) = Tice. (16b) 

4. LINEARIZATION AND MODE TRUNCATION 

where we introduce an “effective height” h,,,. 
Comparison with equations (9a) to (lob): 

h.“=[lR[:-9,)J” forafullicecap (12a) 

h,,, = [it(&,-i,)]i” for a ring of ice. (12b) 

On integrating both sides of equation (11) over a 
small slice around x, and on assuming continuity of T 

one finds the free boundary condition, equation (6). 
From the point of view of thermodynamics 

equation (11) can also be interpreted as follows. In a 
two phase system the internal energy E depends upon 
both temperature T and relative composition. 
Measuring the latter by the length I, of a meridian 
between the equator and the ice boundary we have (at 
constant pressure) 

or 

E = E(T, I,) 

In view of the complexity of the full problem we 
carry out a linear analysis around the present day 
temperature distribution T = T*(x) and position of 
the ice-sheets, x, = x:. To this end we set 

7-(x, t) = T*(x) + 0(x, t), (17a) 

x,(t) = x,* + 5(t). (17b) 

Keeping dominant terms in 0 and 5 one finds from 

equations (11) and (16): 

C ; = - QS(x) [tl(x, x,) - tl(x, x:)] 

-Be + D&l -x2g 

- we,, “dj- 6(x -x,), (18a) 

5(t) + @XT) = 0. (18b) 

Let 0” denote the nth Legendre moment of 8: 

dl,6(1- I,) (13) 
etx) = f 8.~" (19) 

where from now on 1 will denote the length along a 
.=0 
even 

meridian measured from the equator. 
’ According to thermodynamics 8” = 

s 
(2n + 1) 0(x) P.(x) dx. 

0 

(ig)Tp = -pgr,, - rTP 

(14) The following equations for 0. are easily obtained from 
equations (18), after a complete linearization in l and e 

where -rTP is the heat of melting, is made. 

-r TP = L-P. (15) 

Neglecting the variation of volume with respect to I, 
and substituting aE/al, from the above expressions we 
obtain the extra term of equation (11) associated with 

c$ - [B+n(n+l)D]8, - (2n+l) 

x Q4W t + WP,W g , Pa) 1 
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t = - fg ! > -i,s(x:) 
x: 

=; - g -’ 
i ) f e,p,(x:) 

x: n=O 
L?YCIl 

where 

b (20b) 

S(x) a(x, x,)P, dx . 

From these relations one can obtain the 
characteristic equation for the problem which, as is 
well known, determines the temporal evolution in the 
vicinity of the reference state (T*, xt). Setting 

0” = i?” ear and < = teewf (21) 

we find 

x 

i 
$Qd.(x:) + +P*(,:,,,? 1 = 1 (22a) 

where we introduced the dimensionless variable 

Wb) 

An important feature of equation (22a) is to contain 
the effect of the di~ontinuity of the flux at the ice 
boundary in each term of the series. For this reason a 
truncation to the first few terms, which is necessary if 
explicit values of w’ are to be obtained, can be 
envisaged without contradicting the free boundary 
condition, equation (6). 

The results are highly dependent upon the 
numerical value of h,,, as defined by equations (12a) 
and (12b) for the two ice sheet models respectively. 
Adopting A - 7 m, which gives reasonable central 
thicknesses as compared to those characterizing 
Antarctica and Greenland today, we have for a full ice 
cap: n/2 - #, - 16” and h, - 3500 m. On the other 
hand for a ring ofice : q&, - 4, w 6” and Jr,, - 1500 m. 

For usually accepted values of the thermal inertia 

coefficient, associated with a mixed ocean layer of a few 
metres (e.g. c = 4.6 x 10’ J rns2 K) and for the values 
of L, p given by thermodynamics, Lph,,,/c is of the 
order of 2.3 x lo4 and 1 x lo4 respectively. 

We solved equation (22a) when truncation to n = 0 
and 2 was successively performed, and found that the 
solutions w’ were always real and negative. This 
implies the absence of oscillations and the stability of 
the present-day climatic regime with respect to small 
ice sheet disturbances. The first two columns ofTable 1 
summarise the results concerning that solution w’ 
which corresponds to the longest characteristic time 
scale, 2 - w - 1 = c/Bw’, for various values of h,,. We 
see that o’ becomes as small as - IO-’ for values of 
Lph,,,Jc of the order of lo4 which is precisely the order 
of magnitude suggested by the two model ice sheets. 
Now w’ - 1 corresponds (see equation 22b) to a 
relaxation rate of the order of Bc-‘, characteristic of 
usual energy balance models. Such values are indeed 
found from the solution of the characteristic equation 
(22a). In addition to them however the results given in 
Table 1 show that we have been able to generate, self- 
consistently, the long time scale characterizing the 
interaction between atmosphere, hydrosphere and 
cryosphere. The appearance of such long scales reflects 
the enhanced inertia gained by the system as a result of 
the presence of ice sheets. In this respect from the 
estimations we made earlier it becomes obvious that 
the full ice cap gives rise to a greater inertia than the 
circumpolar one. 

5. SOLUTION BY GALERKIN’S METHOD 

The mode truncation obtained in the preceding 
section gave rise to a characteristic equation 
containing explicitly the effect of the ice sheets. On the 
other hand any truncation to a finite number of modes 
implies (see equations 18) that the ~~ont~uity of the 
flux across the ice boundary will be smeared out. In 
order to remove this deficiency we analyze in this 
section the linearized problem using Galerkin’s 
method. We start from expression : 

e = $J e,w,(x) + U(X) 
n=O 
eve” 

Table 1. Dependence on the slowest w’, solution of equation (22a) for various values of 
Lph,,dc 

L~h,,,/c One mode Two modes 
Galerkin’s 

method 

1 -0.610 -0.235 - 0.234 
10 - 0.550 -0.175 -0.172 
100 -0.277 -0.481 x 10-t -0.457 x 10-r 
1000 -0.464 x 10-r -0.579 x 10-2 -0.544 x 10-Z 
1000 -0.498 x lo-’ -0.591 x 10-3 -0.554 x 10-a 

Two mode truncation (first 2 columns) compared to the results obtained by Galerkin’s 
method (3rd column). Numerical values of the parameters used : Q = 340 Wm- 2 ; A = 
214.2Wm-‘;B = 1.575 Wm-2K-t;D = 0.591 WmTZ;S(x) = 1 - 0.477 P*(x); 1 - 
a(X, x,) = 0.697 - 0.0779 Pz(x) for x < x, and 1 - a(x, xJ = 0.38 for x > x,. 
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where U(X) is orthogonal to all Legendre polynomials 
P, to P,, and view 6 as a trial function, to be 
adequately parameterized. The simplest non-trivial 
case is 

0 = e,(t) + B,(t)P,(x) + u(x, t). (24) 

In addition to being orthogonal to P, and P,, the 
function u(x, t) is taken to satisfy the boundary 
conditions (6) and (16b), including the flux discon- 
tinuity at the ice edge. The simplest x-dependence of 
u(x) compatible with these requirements is: 

x= 
u(x) = a, + a, - 

2 
x < x,, 

(25) 

X2 
u(x) = b, + b,x + C2 y x > x,. 

The orthogonality condition of u(x) together with 
relations (6) and (16) constitute the following system of 
4 equations with 5 unknowns: 

Xf x,z uO + az 1 - b, x, - c2 z = b,, 

x: b, 
a,x, + ““X-- -,(x2 - 1) - 2(.x,, - 1) = b,(x, - l), 

a&l 

-u2x, t b, + c2x, = ~- 
D(l-xf) dt 

Leaving b, as a free parameter we want to derive the 
equations of evolution for this quantity as for BO and 
0,. To this end, substituting the trial function equation 
(24) into the augmented energy balance equation, 
equation (1 l), multiplying successively by P,, P, and 
P,, integrating over the domain of x and linearizing, we 
arrive at the following expressions for Be, 8, and b,: 

ah dt 
c at + -b&, - = - (BB, + QA,t), dt 

c !&= + 5 k’h,,, P, $ = - [(B +60)8, + 5QA2c], 

i 
F2; f FId; = b,F, - QA4t 

(27) 

where F, to F4 are cumbersome functions of x,* and 
the parameters arising from the solution of equation 
(26) and the integration of the different terms of the 
energy balance equation. 

From the above system of linear differential 
equations (27) together with the ice boundary 
condition 

one can again obtain a characteristic equation which is 
of 6th degree in w. However it can be considerably 
simplified if one anticipates, in agreement with the 
previous section, the existence of solutions 
corresponding to a long relaxation time. Another 
simplification which yields similar results is to 
uncouple the first two equations from the third one by 
choosing b, = 0, but still keeping the influence of u(x), 
which does not now contain any free parameters, in the 
first two equations. 

The third column of Table 1 gives the slowest mode 
w’ in terms of Lph,,,/c, as determined from the above- 
described Galerkin procedure. We see that the 
agreement with the two mode truncation is excellent. 
We are therefore confident that we have indeed 
determined an intrinsically long time scale of the 
climatic system. 

6. THERMODYNAMIC ASPECTS. CONCLUDING 
REMARKS 

In this section we further discuss the origin of the 
enhanced inertia arising from the presence of the ice 
sheets. To this end, we construct the entropy balance 
equation and then analyse the stability properties in 
terms of the excess entropy production. 

We first write the energy balance equation (11) in the 
form 

dT 
C-=RW,,d’ 

at 
dt w - Is) (29) 

where R stands for all terms except those related to the 
movement of the ice boundary. 

According to the discussion at the end of Section 3, 
the entropy of the system in the presence of the moving 
boundary is (at constant pressure): 

S = S(T, I) = 
s 

sd[ (30) 

where the integration extends from the equator to the 
pole and 

According to chemical thermodynamics [I l] 

(32) 

where A is the affinity of the phase transformation. 
Combining equations (29)-(32) we obtain 

(33) 

The first term of the right hand side has been studied in 
detail in a recent paper [12]. The second term is 
specific to the ice boundary. It has the familiar bilinear 
form [13] of a thermodynamic force, A/T, multiplied 
by the flux, dl,/dt, of an irreversible process. 

The next step is to construct the balance equation 
for the excess entropy of the system. The main 
motivation behind this calculation is the 
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Glansdorff-Prigogine theory [ 131, according to which 
excess entropy is a convenient Lyapounov functional 
governing stability of a reference state. Specifically, if 
6’s is the second differential of entropy evaluated at 
the present day climate, stability of thermodynamic 
equilibrium implies that 

62s < 0. (34a) 

Thus, if 

$?S>O (34b) 

by Lyapounov’s theorem, then the reference state will 
be neutrally stable [if the equality sign prevails in 
(34b)] or asymptotically stable [if the inequality sign 
prevails in (34b)]. 

The first differential of entropy density is [cf. 
equations (30)-(32) and the notation of Sections 4 
and 51: 

6+3+ yqcs(l-l,). (35) 

It follows that 

where we neglected the variation of c on 1 and of rTP 
on T. 

The differential of affinity at the ice boundary (at 
constant pressure) is given by 

where 

GTP= -($)Tp=($)Tp, (37b) 

G being Gibbs free energy. 
Substituting into equation (36) we see that 

= 0 

PI 

and 

Thus 

where the last term is evaluated at the ice boundary. 

Expression (38) is negative definite. Indeed, c and 
G TP are non-negative and do not vanish simul- 
taneously owing to the convexity of the Gibbs free 
energy. 

We now evaluate the time derivative of ~5~s. Within 
the framework of a linearized stability analysis we 
discard the time variation of the coefficients of the 
quadratic form, which are to be evaluated at the 
(stationary) reference state. We thus have 

On the other hand, the linearized form of equation (29) 
reads 

(40) 

Substituting into equation (39) we obtain 

- + 
s c 

G,,<, + Fe, 2. (41) 
s > 

The first term of the right hand side has been analyzed 
in detail in [12]. The remaining terms are specific to 
the dynamics of the ice boundary. Utilizing equation 
(37a) one can easily see that they can be put in the form 

This has the same structure as the second term of 
equation (33), except that the force and flux have been 
replaced, respectively, by their excess values around 
the reference state. We may therefore refer to this 
contribution as excess entropy production. 

In our problem the reference state around which 
6(A/T), is to be evaluated is a steady state. From the 
point of view of the phase transformation, it has to be 
considered as a state of equilibrium (zero affinity), 
since the two phase coexist under these conditions. It is 
therefore reasonable to evaluate 6(A/T), by adopting a 
linear law relating fluxes and forces 

A -=p$, 
T 

(43) 

where the Onsager coefficient _Y is positive. 
Thanks to equation (43), expression (42) becomes 

[&G?12s)]b0”“. = Y(d$Y > 0. (44) 

Thus according to Lyapounov’s stability theorem, 
equation (34b), the presence of the ice boundary has a 
stabilizing effect. This result may seem unexpected at 
first hand, but can nevertheless be understood as 
follows. When ice melts the region around the ice 
boundary blocks a certain amount of energy. Thus, on 
the average the temperature around this region will 
have to drop, and this will tend to move the boundary 
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back to its initial position. A similar negative feedback 
would obtain in case the ice front would tend to 
advance as a result of a ~rturbation. Note, however, 
that the coupling between ice boundary and bulk 
terms may have a destabilizing effect through the 
dependence of the albedo on the position of the ice 
boundary. 
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UN PROBLEME DE FRONTIERE LIBRE RESULTANT DE LA DYNAMIQUE CLIMATIQUE 

R&urn&On &die le transfert de masse et de chaleur en presence de phases coexistantes dans un probltme 
d’interet giophysique. Le systeme dynamique considere est l’atmosphere-hydrosphereecryosphtre, ou l’on a 
effectue des moyennes suivant les directions verticale et longitudinale. Le systbme reduit qui en resulte est 
styli& par un modele de bilan tnergetique uni-dimensionel tenant compte du couplage entre les deux phases 
en presence (les calottes glaciaires et les oceans), par l’intermediaire d’une condition aux bords du type Stefan 
(probltme de frontitre libre). L’equation de bitan est resolu analytiquement dans ~approximation lineaire, 
par une procedure de troncature de modes, ainsi que par la methode de Galerkin. On obtient ainsi des 
informations sur la stabihte du climat actuel par rapport a de petits deplacements de la limite de la glace. On 
insiste Cgalement sur les aspects thermodynamiques, ainsi que sur les echelles de temps caracteristiques de 

I’t5volution. 
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EIN FREIES RANDWERTPROBLEM DER KLIMA-DYNAMIK 

Zusammenfassung-Es wird ein Warme- und Stofftibergangsproblem, das von geophysikalischem Interesse 
ist, behandelt. Das betrachtete dynamische System umfaRt Atmosphlre, Hydrosphare und Kryosphare, 
wobei die rlumlichen Freiheitsgrade in vertikaler und horizontaler Richtung punktformig konzentriert 
werden. Das reduzierte eindimensionale System wird durch ein einfaches jahreszeitlich gemitteltes 
Energiebilanzmodell simuliert unter Berticksichtigung der Kopplung der beiden vorhandenen Phasen : der 
Eisschichten und des Ozeans. Dieses erfolgt konsistent durch Einfuhrung einer Stefan’schen Randbedingung 
an der Phasengrenzfllche. Die daraus resultierende Gleichgewichtsbedingung wird linearisiert und 
analytisch nach dem Galerkin-Verfahren gel&t. Die Untersuchung konzentriert sich auf die Stabilitat der 
gegenwlrtigen klimatischen Verhaltnisse im Hinblick auf kleine Verschiebungen der Eisgrenze. Besonders 
hervorgehoben werden sowohl die thermodynamischen Aspekte als such die fur die Entwicklung 

charakteristischen Zeitrlume. 

OAHA 3AAAYA CO CBO6OAHOR I-PAHHUER, BCTPEYAIOQAXCII B ,LJMHAMMKE 
KJIHMATA 

Annnrannn- npOBeAeH0 HCCneAOBaHIle BHTepeCHOti C reO1$ki3ki'ieCKOii TO'lKki 3peHHS, 3aAa9Ei 0 TennO- 

li MacconepeHoce npe Hankiwiki OAHOBpeMeHHO HeCKOnbKHX @as. PaccMarpunaercn AUHaMHYeCKaR 

CuCTeMa.BKnto~alollranaTMOC~epy,ruApOC~epyuKpaOC~epy,B KOTOpOii npOCTpaHCTBeHHbIe KOOpAW 

HaTbl B BepTHKanbHOM A rOpH30HTanbHOM HanpaBneHlWX IQ,eACTaBneHbI B Bk,Ae OAHOti 0606ueHHOfi 

KOOpAIiHaTbL~Ony'ieHHaaTaKBM o6pasoM OAHOMepHa~CHCTeMaMOAenlipyeTC~IlpOCTOii.yC~AHCHHO~ 
n0 rOAaM, MOAenbH) 6anaHca 3HeprW, B KOTOpOi y%iTbIBaeTCS B3akiMOAekTBHe AByX @as: neAHHOii 

IlOKpOB H OKeaH. CaMOCOrnaCOBaHHOCTb AOCTNHyTa 38 CqeT HCnOnb30BaHWR CTe@aHOBCKOrO rpaHW,- 

Hero ycnoem Ha rpamiue pasnena @as. FlonyqeHHoe ypaenemie 6anaHca neHeapu3oBaHo A pelueHo 

aHa.mTmecKH c noMouwo yceseaan hfon li kfcnonb30BaHm MeTona ranepKsiHa. AHanki3HpyeTCx 

CTa6EfnbHOCTb COBpeMeHHOrO KnWMaTH'leCKOrO peSiGiMa C yqeTOM He6OnbUIHX nepeMelL(eHBfi neAOBOfi 

rpaHmb1. Oco6oe BHAMaHBe ynenetfo TepMOAHHaMHqeCKHM acneKTaM, a TaKxe XapaKTepHcTurecKHM 

BpeMeHHbIM MaCUITa6aM paCCMaTpHBaeMbIX "pOAeCCOB. 


