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Abstract—A heat and mass transfer problem of geophysical interest involving coexisting phases is studied.
The dynamical system considered is the atmosphere-hydrosphere~cryosphere, wherein the spatial degrees of
freedom along the vertical and longitudinal directions have been lumped. The reduced one-dimensional
system is modelled by a simple, yearly averaged, energy balance model taking into account the coupling
between the two phases present : the ice sheets and the ocean. This is done self-consistently by introducing a
Stefan type of boundary condition at the interface. The resulting balance equation is linearized and solved
analytically using mode truncation and Galerkin’s method. The analysis is centered on the stability of the
present-day climatic regime with respect to small excursions of the ice boundary. Special emphasis is put on
the thermodynamic aspects, as well as on the characteristic time scales of evolution.

NOMENCLATURE
A, affinity of the phase transformation;
a(x, x,), absorption function;
¢, heat capacity;
D, eddy diffusivity ;
E, internal energy;
g, acceleration of gravity ;
h, height of ice sheet;
J, energy flux;
L, r7p, heat of melting ice;
I width of ice sheet ; length along a meridian ;
Q, solar constant divided by 4;
R, radius of the earth;
S(x), normalized distribution of solar radiation;
S, entropy;
T, surface temperature ;
v, section of ice sheet along the meridional
direction;
X, sine of the latitude;
X sine of the latitude of the ice boundary.

Greek symbols

o, albedo;

@, latitude;

A, parameter given by A = (4/3)t/pg;

0, mass density of ice;

1, yield stress of ice;

o latitude of the equatorward tip of the ice
sheet in radians;

Pms latitude of the poleward tip of the ice sheet

in radians.

1. INTRODUCTION

IT1s weLL known that most situations involving energy
transfer between two coexisting phases separated by
an interface, give rise to free boundary value problems
[1]. Typical problems of this kind refer to rather
simple geometries with a high degree of symmetry:
Solidification of a semi-infinite body, of a plate, a
sphere, a cylinder, and so forth.
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Large scale geophysical phenomena provide
beautiful examples of heat and mass transfer in a
somewhat less traditional context. The present paper is
devoted to one such problem, namely, the interaction
between an ice cap and the earth-atmosphere system.
Interactions of this sort are known to play an
important role in climate dynamics, especially in
connection with the onset of glaciation cycles.

The mathematical modelling of the climate system
received considerable attention recently [2]. One of the
most powerful tools has been the systematic use of
simple energy balance models where an average over
the longitudinal and vertical coordinates is taken, and
the only energy exchanges considered explicitly are
along the meridional direction. Such models are
reasonably tractable, and predict a variety of
bifurcation phenomena associated with transitions
between present day and less favorable climatic
conditions [3]. They all involve a discontinuous
element which marks the beginning of an ice sheet.
Aside from this discontinuity, the dynamical aspects of
the interaction between the ice sheet and the ice free
part of the earth are discarded. It is only when the
explicit ice sheet dynamics, and hence the coupling
between energy balance and mass balance of the
glaciers is considered, that one takes such interactions
into account [4, 5]. On the other hand, the explicit
form of the coupling requires a number of additional
parameterizations of such quantities as the ablation
rate of the ice sheet, the snow fall etc. Although
plausible, such parameterizations certainly go beyond
the basic assumptions underlying the balance
equations.

The main hypothesis of the present paper is that the
interaction between an ice sheet and the ice free part of
the earth-atmosphere system can be viewed as a free
boundary value problem. In Section 2 a 1-dim. energy
balance model is introduced, and some problems
related to the time scales of the evolution predicted by
this model are raised. In Section 3 we construct the
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augmented model in which the position of the ice edge
is related, self-consistently, to the energy balance
equation through a Stefan type of boundary condition.
In Sections 4 and 5 a linearized analysis around the
present-day conditions using, respectively, mode trun-
cation and Galerkin’s method is outlined. Section 6 is
devoted to the thermodynamic aspects, particularly
the entropy and excess entropy balance equations as
well as to the presentation of the main conclusions.

2. THE MODEL

We begin with the yearly averaged energy balance
equation of a column of unit surface extending from
the top of the atmosphere until a certain ocean depth
(mixed layer) within which most of the transport
processes are assumed to take place. Quite generally,
one can write

E;i: = Sources — Sinks — divJ (1)
where E is the internal energy and J the energy flux. In
principle, equation (1) is coupled to the momentum
and mass transfer equations. However, because of the
wide separation of the characteristic times associated
with the vertical and longitudinal directions on the one
side, and the meridional direction on the other side, it
has been suggested [6, 7] that equation (1) can be
averaged over the first two ones. In the resulting 1-dim.
model (see Fig. 1), North [8] was able to obtain a
reasonably satisfactory representation of the present-
day meridional temperature distribution by modelling
J as a (turbulent) diffusive heat transfer:

J, = —D'(VT),
or

D 27T
J, = R(l x%) o 2)
Here D' is the eddy diffusivity, R the radius of the earth,
T the surface temperature and x the sine of the latitude,
X = sin @.

Within the same approximation the remaining
termsin (1) are treated as follows: dE is replaced by dT
through the thermodynamic relation

dE = ¢cdT (3a)

where ¢ is a heat capacity {or thermal inertia
coefficient). The source term is written as

Source = Q5(x)alx, x,) (3b)

where Q is the solar constant divided by 4, giving the
value of the incoming solar radiative flux averaged over
a year and over the surface of the earth (the factor 1/4
results from the earth’s sphericity). S(x) is the
normalized distribution of solar radiation determined
by astronomical calculations, and a(x, x,) is the
absorption function, writtenas 1 — a{x, x,), « being the
albedo. In climate modelling it is common to represent
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a(x, x,) as a function which changes in a step-like
fashion in the vicinity of the ice edge, x,, due to the
marked difference between the reflectivities of ice and
ocean or land. In particular, it is customary to consider
symmetric hemispheres and write:

Bo X > x,
oy + o, P,

a(x, x,) = { (3¢)

X < X

where j, is the absorption coefficient over ice or snow
when 509, covered with clouds, and «,, o, are the
absorption coefficients over ice free areas obtained
after analyzing the albedo distribution by Legendre
series. Finally, the sink term expresses the effect of the
infrared cooling and is approximated by

Sink = I(x) = A + BT(x) (3d)

provided that the range of variation of T around a
reference value is not very high.

On substituting equation (2) as well as equations
(3a)—(3d) into the energy balance equation (1), and
setting D == D'/R? we obtain

oT
c— = Q@ S{x)alx, x.) — (4 + BT(x))

ot
2l 0T (x)
PR — Z
+6x [{1 x)yD 3% ] 4)

In order to have a closed form equation we still have
to relate the position of the ice edge, x,, to the
temperature 7. Following Budyko [6] we require
that:

T(x) > — 10°C no ice present,

(5)
T(x) < — 10°C

Equations {4) and (5) constitute a well posed problem
if, in addition, appropriate boundary conditions are
given at x=10 and x = +1. In the symmetric
hemisphere case here considered the appropriate
conditions are zero energy flux at the pole and across
the equator. Finally, in all studies performed so far a
physically motivated condition has been added,
namely that the temperature and its gradient, giving
the heat flux, must be continuous at the ice edge.

permanent ice present. J

Absorbed
solar flux

Intrared
Fyq cooling

Fic. L
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As mentioned in the introduction, the analysis of
equations (4)-(5) gives rise to an amazing variety of
bifurcation phenomena corresponding to climatic
transitions. Rather than dwell on these results however,
we prefer to insist on the limitations arising from some
of the assumptions adopted in this formalism, which in
our opinion are particularly stringent.

As is known, one of the ubiquitous features of the
climatic system is the coexistence of processes
characterized by widely separated time scales. Thus,
our usual perception of climate is associated with
variations of temperature, humidity etc. on a scale of a
few years; the atmosphere-hydrosphere—cryosphere
system brings about new features with characteristic
scales of 10°-10*yr, the onset of a glaciation time;
finally, in a longer time scale the interaction with
external variations (orbital parameters, solar output or
geological environment) begin to play a non-negligible
role [9].

Now, in the modelling based on equations (4) and
(5) these various processes have been completely
decoupled. More specifically, the assumption of con-
tinuous temperature gradient across the ice edge
implies equality of the heat fluxes on both sides. As a
result, the ice edge follows passively the temperature
variations even if the latter occur with the characteris-
tic relaxation time ¢/B of equation (4) which is typically
of the order of a few years. This is clearly wrong, as the
enormous inertia of the ice sheets should imply a scale
of variation of the ice edge of at least several hundred
years.

As mentioned in the introduction, the most
satisfactory way to account correctly for the
atmosphere-hydrosphere—cryosphere coupling would
be to appeal both to the energy balance equation and
to the mass balance of the ice sheets. However, in view
of the complexity of this project, and the concomitant
uncertainties involved in the parameterization of the
various quantities involved in the theory, we adopt
hereafter an alternative point of view. We show that
independently of explicit ice sheet dynamics, there
exists a completely self-consistent coupling mechanism
between atmosphere, hydrosphere and cryosphere
which is based solely on the energy balance equation,
and which is sufficient to generate the long time scale
missing in equations (4) and (5).

3. AN AUGMENTED ENERGY BALANCE MODEL

The starting point is to realise that the continuity of
the flux across the ice edge may still be a satisfactory
assumption for steady states, but should break down
completely for time dependent ones. As is well known
from free boundary value problems, the excess
between “right” and “left” fluxes around a boundary
separating two phases can serve for the advance of one
of them at the expense of the other [1]. Let L denote
the heat of melting of ice per unit mass, p its mass
density, and V the section of the ice sheet along the
meridional direction. Then, remembering that the
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origin of the coordinate system in the energy balance
equation is at the equator,
dv
Jolxs — &) = Jy(x, + &) = Lp a (6)
where ¢(¢ > 0) denotes a small distance from the ice
boundary x,.

We proceed to the evaluation of dV/dt. If present-
day configurations of ice sheets are to be modelled, two
different cases can be envisaged: (i) a full ice cap
centered at the pole (southern hemisphere), and (ii) a
circumpolar ring of ice delimited by the presence of sea
(northern hemisphere).

According to Weertman [10], the ice sheet flows asa
perfectly plastic substance and the flow is only in the
meridional direction. It follows that the ice sheet
profile remains always parabolic around its centre of
symmetry. Choosing the latter as the origin of a local
coordinate system:

hu) = A2 (1 = Juf)® ™

where h is the elevation above sea level, I is the width of
the sheet and / a parameter depending on the yield
stress of ice.

Consider first the case of a full ice cap. The cross-
section V is then

1
V= ;}/Zj du(l — |u|)*? = gim B2 (8)
0

Hence

dv — (A2 ﬂ

dr dt ®a)

Now, dl/dr can be related straightforwardly to the
m.tion of the ice boundary x_, as described in the
original coordinate system, by (see Fig. 2a)

di R dx,

‘a2 % 10
& T U-x)" & (10a)

b4
=530

¢, being the latitude in radians (¢, = arcsin x,).

We next consider the case of a circumpolar ring of
ice. Equation (7) remains unaltered provided that [ is
now interpreted as the half width. Thus,

dv di

= 2(An'2 -,

@ a ©0)

The connection between this expression and x,
becomes now more involved. From Fig. 2(b) we have

d 1 R dx, 106
dt  2(1-x)'% dr’ (10b)
1 R
= E(IM - Is) = 5(¢M - ¢s)

where ¢ is the latitude of the poleward tip of the sheet.
Using equations (6)-(10) we may finally write the
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(b)

F1G. 2.—Schematic representation of hemispherical ice sheet models (z) full ice cap, (b) a circumpolar ring of ice.

energy balance equation taking ice melting or advance
into account in the form

%T = QS(x)a(x, x,) — [4 + BT(x)]
g eT(x) dx,
+& |:(1—x2)D x :l—LPhefrmé(X—xs), (11)

where we introduce an “effective height” h,;.
Comparison with equations (9a) to (10b):

1:2
B = [,{R <g - ¢s>} forafullicecap  (12a)

R 12
heg = [A 5 (¢M—¢5)] for a ring of ice. (12b)

On integrating both sides of equation (11) over a
small slice around x, and on assuming continuity of T
one finds the free boundary condition, equation (6).

From the point of view of thermodynamics
equation (11) can also be interpreted as follows. In a
two phase system the internal energy E depends upon
both temperature T and relative composition.
Measuring the latter by the length I, of a meridian
between the equator and the ice boundary we have (at
constant pressure)

E=KT,I)
or
0E
dE = ¢dT + (—) di,é(l- 1) (13)
“ts /TP

where from now on / will denote the length along a
meridian measured from the equator.
According to thermodynamics

OE p oV
9EN _ _p(VY _,
oL, Jre oy Jp T°

where —r; is the heat of melting,

(14)

—rpp = Lp. (15)

Neglecting the variation of volume with respect to I,
and substituting 0E/dl, from the above expressions we
obtain the extra term of equation (11) associated with

the phase transition.

The problem we now face is to solve equation (11)
subject to the additional boundary conditions
mentioned in Section 2, namely

Jo0) = J (1) =0, (16a)
T(x,—¢) = T(x,+¢) = Ty, (16b)
4. LINEARIZATION AND MODE TRUNCATION

In view of the complexity of the full problem we
carry out a linear analysis around the present day
temperature distribution T = T*(x) and position of
the ice-sheets, x, = x*. To this end we set

T(x, t) = T*(x) + 0(x, t),
x(1) = x¥ + &(1).

Keeping dominant terms in 6 and & one finds from
equations (11) and (16):

(17a)
(17b)

Cg = —QS(x) [alx, x;) — a(x, x¥)]
0 ,, 00
~BO + Do (1 = x%) -
d¢
— Lph @ ox—x,), (18a)
(dT*> &) + 6(xx¥)=0. (18b)
dx /e

Let 8, denote the nth Legendre moment of §:

0(x) = 0,P,

1

n
eV,

)
=

8, = Jl (2n + 1)08(x) P,(x) dx.
0

The following equations for 8, are easily obtained from

equations (18), after a complete linearization in £ and 8
is made.

dé,

“dr

= — [B+n(n+1)D]6, — (2n+1)

x [QA,.(xs*) ¢ +LphP,.(x;')2—f} (20a)
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dT*\"!
&= - (dx ) 6(x?)

T*\-! = (20b)
-- (&), £ o

% s
where
d 1
A, = {a; fo S(x) alx, x,)} P, dxl:.
From these relations one can obtain the

characteristic equation for the problem which, as is
well known, determines the temporal evolution in the
vicinity of the reference state {(T*, x¥). Setting

0, =0,e"and ¢ = fe~ ¥3))

we find

dT* -1 =
(_E) n‘éo D
even w"'l' 1+n(n+ 1)’3‘

x E QA, (x*) + LpTh‘“ P,,(x;")cu'] =1 (22a)

(2n+1) P,(x¥)

where we introduced the dimensionless variable

. wc
0 =—

B (22b)

An important feature of equation {22a)is to contain
the effect of the discontinuity of the flux at the ice
boundary in each term of the series. For this reason a
truncation to the first few terms, which is necessary if
explicit values of ' are to be obtained, can be
envisaged without contradicting the free boundary
condition, equation (6).

The results are highly dependent upon the
numerical value of A, as defined by equations (12a)
and (12b) for the two ice sheet models respectively.
Adopting 1 ~ 7m, which gives reasonable central
thicknesses as compared to those characterizing
Antarctica and Greenland today, we have for a full ice
cap: /2 — ¢, ~ 16°and kg ~ 3500 m. On the other
hand foraring ofice: ¢y — ¢, ~ 6°and 4 ~ 1500 m.

For usually accepted values of the thermal inertia
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coefficient, associated with a mixed ocean layer of a few
metres (e.g. ¢ = 4.6 x 107 Jm~2 K)and for the values
of L, p given by thermodynamics, Lph/c is of the
order of 2.3 x 10* and 1 x 10* respectively.

We solved equation {22a) when truncationton = 0
and 2 was successively performed, and found that the
solutions ¢’ were always real and negative. This
implies the absence of oscillations and the stability of
the present-day climatic regime with respect to small
ice sheet disturbances. The first two columns of Table 1
summarise the results concerning that solution o'
which corresponds to the longest characteristic time
scale, 7 ~ w™! = ¢/Bw’, for various values of k. We
see that ' becomes as small as ~ 1073 for values of
Lph,g/c of the order of 10* which is precisely the order
of magnitude suggested by the two model ice sheets.
Now ' ~ 1 corresponds (see equation 22b) to a
relaxation rate of the order of Be™?, characteristic of
usual energy balance models. Such values are indeed
found from the solution of the characteristic equation
(22a). In addition to them however the results given in
Table 1 show that we have been able to generate, self-
consistently, the long time scale characterizing the
interaction between atmosphere, hydrosphere and
cryosphere. The appearance of such long scales reflects
the enhanced inertia gained by the system as a result of
the presence of ice sheets. In this respect from the
estimations we made earlier it becomes obvious that
the full ice cap gives rise to a greater inertia than the
circumpolar one.

5. SOLUTION BY GALERKIN'S METHOD

The mode truncation obtained in the preceding
section gave rise to a characteristic equation
containing explicitly the effect of the ice sheets. On the
other hand any truncation te a finite number of modes
implies (see equations 18) that the discontinuity of the
flux across the ice boundary will be smeared out. In
order to remove this deficiency we analyze in this
section the linearized problem using Galerkin’s
method. We start from expression:

N
0= 3 8,(HP,(x)+ u(x)
n=0

(23)

Table 1. Dependence on the slowest o', solution of equation (22a) for various values of

Lphg/c
Galerkin's

Lph,g/c One mode Two modes method

1 -0.610 —0.235 —-0234

10 -0.550 —-0.175 -0.172

100 -0.277 —~0481x 107! ~0457x10™!
1000 —0464x 1071 ~0.579x 102 —0.544 x 102
1000 —0.498 x 1072 —-0.591 <1072 —0.554 %1073

Two mode truncation (first 2 columns) compared to the results obtained by Galerkin's
method (3rd column). Numerical values of the parametersused: @ = 340Wm™?; 4 =
2142Wm™ ;B = 1.575Wm 2K~ '; D = 0591 Wm™%;5(x) = | — 0477 P,(x); 1 —
a(x, x;) = 0,697 — 0.0779 P,(x) for x < x, and 1 — afx, x,) =0.38 for x> x,.
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where u(x} is orthogonal to all Legendre polynomials
P, to Py, and view 6 as a trial function, to be
adequately parameterized. The simplest non-trivial
case i1s

8 = 0,(t) + 0,(t)P,(x) + ul(x, t). (24)

In addition to being orthogonal to P, and P,, the
function u(x, t) is taken to satisfy the boundary
rnnditinane (LK) anmd (16K inalnding tha fluy Aigran
CULTULOGULDY (Uf alld QIUU’, LHVIUUIEE LU HUA WU
tinuity at the ice edge. The simplest x-dependence of
u(x) compatible with these requirements is:

xZ
ulx)=a, + a, >

“~

X<X s

2
x
u(x)zbo-f-bzx-{-cz—i- X > X,

The orthogonality condition of u(x} together with
relations (6} and (16) constitute the following system of
4 equations with 5 unknowns:

x? :
a, + aZ? — by x, — CQ‘E— = by,
3

s 2
AoX, + Ay — — ——
0vs 26 2

sy oW\ b, ]
ol stz(s 3)72\2 7572
3x? x4 N
“‘%(”5’“—?“1—5)—1’0(3‘5

Lph dx
—ayX, + b2 + CoXs = m‘a"f

- xs)’

(26)

Leaving b, as a free parameter we want to derive the
equations of evolution for this quantity as for 8, and
#,. To this end, substituting the trial function equation
(24) into the augmented energy balance equation,
equation (11), multiplying successively by Py, P, and
P,,integrating over the domain of x and linearizing, we
arrive at the following expressions for 8, 4, and b,:

00 d¢
C?ro‘ + Lpheff_d—? = —(BBO + QAOé),
c% + 5 Lphey P %t = —[(B+6D)f, +504,(],
ob d¢ | 4%
c?ngl + L;O’%rf(FZFt~ + F3E?f) = bofa — 08
27

where F, to F, are cumbersome functions of x} and
the parameters arising from the solution of equation
{26) and the integration of the different terms of the
energy balance equation.

From the above system of linear differential
equations (27) together with the ice boundary
condition

oT*\™!
¢ = — [Bo+8,PxZ) + ulx, 1}] (—a;’) (28)
x!

b (x2 - 1)—%(x3 — 1) = bylx, — 1),

C. NicoLis

one can again obtain a characteristic equation which is
of 6th degree in . However it can be considerably
simplified if one anticipates, in agreement with the
previous i the existence of solutions
corresponding to a long relaxation time. Another
simplification which yields similar results is to
uncouple the first two equations from the third one by
choosing b, = 0, but still keeping the influence of u{x),
which does not now contain any free parameters, in the
first two equations.

The third column of Table 1 gives the slowest mode
' in terms of Lph /c, as determined from the above-
described Galerkin procedure. We see that the
agreement with the two mode truncation is excellent.
We are therefore confident that we have indeed
determined an intrinsically long time scale of the
climatic system.

G0,

6. THERMODYNAMIC ASPECTS. CONCLUDING
REMARKS
In this section we further discuss the origin of the
enhanced inertia arising from the presence of the ice
sheets. To this end, we construct the entropy balance
equation and then analyse the stability properties in
terms of the excess entropy production.
We first write the energy balance equation (11)in the
form
T di
€5 = R + rﬂ,dt i —1)
where R stands for all terms except those related to the
movement of the ice boundary.
According to the discussion at the end of Section 3,
the entropy of the system in the presence of the moving
boundary is {at constant pressure):

(29)

S=S(T, 1) = fs di (30)

where the integration extends from the equator to the
pole and

as ¢ T asy di
— = d — _— e — .
ot J' i[T ot * <61 )T,,dt o ls)} 1

According to chemical thermodynamics [11]

A A1
ol Jpp T

where A is the affinity of the phase transformation.
Combining equations (29)-(32) we obtain

_as_jf‘ 1 Ad

(32)

dl =R
ot *

. 33
T T dr (33)

The first term of the right hand side has been studied in
detail in a recent paper [12]. The second term is
specific to the ice boundary. It has the familiar bilinear
form [13] of a thermodynamic force, A/T, multiplied
by the flux, dl/dt, of an irreversible process.

The next step is to construct the balance equation
for the excess entropy of the system. The main
motivation behind this calculation is the
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Glansdorfi-Prigogine theory [ 13], according to which
excess entropy is a convenient Lyapounov functional
governing stability of a reference state. Specifically, if
828 is the second differential of entropy evaluated at
the present day climate, stability of thermodynamic
equilibrium implies that

55 <0. (34a)
Thus, if
i
—6285=20 (34b)
ot

by Lyapounov’s theorem, then the reference state will
be neutrally stable [if the equality sign prevails in
(34b)] or asymptotically stable [if the inequality sign
prevails in (34b)].

The first differential of entropy density is [cf.
equations (30)-(32) and the notation of Sections 4
and 5}:

c

A-r
=0+ ——TFE5(1-1). 35
s T + T col—1) (35)
It follows that
A—r
o e
Tsrgo _Llegp 01 < T > ¢
2 2T 2 —a  Jrr
P A—rop .
+ T o0& ro(l—1,) (36)
oT PI

where we neglected the variation of ¢ on [ and of r,
onT.

The differential of affinity at the ice boundary (at
constant pressure) is given by

A Fre Grp
Sl DL J B v 4
o(7)=~ o

6. _ (M _(¥C
L ol )pp \0P )pp’

G being Gibb’s free energy.
Substituting into equation (36) we see that

A—rpp
o] X

oT Pi

(37a)
where

(37b)

and

al TP
Thus

1 1
Lsrg— _ -fdliez e

2 2] T? 2 T,

where the last term is evaluated at the ice boundary.
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Expression (38) is negative definite. Indeed, ¢ and
G,p are non-negative and do not vanish simul-
taneously owing to the convexity of the Gibbs free
energy.

We now evaluate the time derivative of 62S. Within
the framework of a linearized stability analysis we
discard the time variation of the coefficients of the
quadratic form, which are to be evaluated at the
(stationary) reference state. We thus have

d /1 ¢c 00 G o¢

—(20%8 )= - {dI50——-LF¢ =2 (39

az<2 ) J T2 &t T, ésaz (39)
On the other hand, the linearized form of equation (29)
reads

o0 d¢
—=0R —=8(1-1). 4
iy +rregy (1=1) (40)
Substituting into equation (39) we obtain
d /1 0
Z (2828 = — —
o (2 S) Jlez R
1 r dé
-—|G IPg )= (1
T5< TPés+ Ts s)dl ( )

The first term of the right hand side has been analyzed
in detail in [12]. The remaining terms are specific to
the dynamics of the ice boundary. Utilizing equation
(37a) one can easily see that they can be put in the form

)l )
ot \2 bound T/, dt

This has the same structure as the second term of
equation (33), except that the force and flux have been
replaced, respectively, by their excess values around
the reference state. We may therefore refer to this
contribution as excess entropy production.

In our problem the reference state around which
0(A/T), is to be evaluated is a steady state. From the
point of view of the phase transformation, it has to be
considered as a state of equilibrium (zero affinity),
since the two phase coexist under these conditions. It is
therefore reasonable to evaluate 6(4/T), by adopting a
linear law relating fluxes and forces

A dl,
T £ i 43)
where the Onsager coefficient .& is positive.

Thanks to equation (43), expression (42) becomes

2(Ls - o(9%Y
)L e (@) o e

Thus according to Lyapounov’s stability theorem,
equation (34b), the presence of the ice boundary has a
stabilizing effect. This result may seem unexpected at
first hand, but can nevertheless be understood as
follows. When ice melts the region around the ice
boundary blocks a certain amount of energy. Thus, on
the average the temperature around this region will
have to drop, and this will tend to move the boundary

(42)
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back to its initial position. A similar negative feedback
would obtain in case the ice front would tend to
advance as a result of a perturbation. Note, however,
that the coupling between ice boundary and bulk
terms may have a destabilizing effect through the
dependence of the albedo on the position of the ice
boundary.

In summary, the analysis reported in this paper
establishes the high inertia and the infinitesimal stabi-
lity of the ice edge characterizing present-day climate
as well as the absence of oscillations (even damped
ones) in the time dependence of perturbations. The
absence of oscillations implies that one cannot expect
any resonance phenomena associated with a weak
external periodic forcing. In the context of climate
modelling, such forcings (associated with the earth’s
orbital variations) have been widely invoked [14] to
explain the glaciation cycles. An explanation of these
cycles based on a resonance mechanism has therefore
to be ruled out in our model

1t would be interesting to extend some of the results
reported in this paper by taking nonlinear effects into
account. An intriguing possibility is the appearance of
new bifurcations to time dependent solutions. Numeri-
cal experiments aiming to verify these points are in
progress.

Acknowledgement—This work was supported, in part by the
Instituts Internationaux de Physique et de Chimie fondés par
E. Solvay.

REFERENCES

i. A. Friedman, Partial differential equations of parabolic
type, Prentice-Hall, N. J. (1964).

2. S. H. Schneider and R. E. Dickinson, Climate modeling,
Rev. Geophys. space Phys. 12, 447-493 (1974).

3. P. G. Drazin and D. H. Griffel, On the branching
structure of diffusive climatological models, J. atmos. Sci.
34, 1696-1706 (1977).

4. D. Pollard, An investigation of the astronomical theory of
the ice ages using a simple climate-ice-sheet model,
Nature, Lond, 272, 233-235 (1978).

5. E.Killgn, C. Crafoord and M. Ghil, Free oscillationsina
climate model with ice-sheet dynamics, J. atmos. Sci. 36,
2292-2303 (1979).

6. M. L. Budyko, The effect of solar radiation variations on
the climate of the earth, Tellus 21, 611619 (1969).

7. W. D. Sellers, A global climatic model based on the
energy balance of the earth-atmosphere system, J. appl.
Meteor. 8, 392400 (1969).

8. G.R. North, Theory of energy-balance climate models, J.
atmos. Sci. 32, 2033-2043 (1975).

9. K. Hasselmann, in Man's impact on climate (edited by W.
Bach, J. Pankrath and W. Kellogg), Elsevier (1979).

10. J. Weertman, Milankovitch solar radiation variations
and ice-age ice sheet sizes, Nature, Lond. 261, 17-20
(1976).

11. L Prigogine and R. Defay, Thermodynamique Chimique,
Desoer, Liége (1950).

12. G. Nicolis and C. Nicolis, On the entropy balance of the
carth-atmosphere system, Q. J. R. Met. Soc. 106,
691-706 (1980).

13. P. Glansdorffl and 1. Prigogine, Thermodynamics of
Structure, Stability and Fluctuations. Wiley, London
{1971y

14. J. Imbrie and J. Z. Imbrie, Modeling the climatic
response to orbital variations, Science, N.Y. 207, 943-953
(1980).

UN PROBLEME DE FRONTIERE LIBRE RESULTANT DE LA DYNAMIQUE CLIMATIQUE

Résumé—On étudie le transfert de masse et de chaleur en présence de phases coexistantes dans un probléme
d'intérét géophysique. Le systéme dynamique considéré est I'atmosphére~hydrosphére—cryosphére, oul'on a
effectué des moyennes suivant les directions verticale et longitudinale. Le systéme réduit qui en résulte est
stylisé par un modéle de bilan énergétique uni-dimensionel tenant compte du couplage entre les deux phases
en présence (les calottes glaciaires et les océans), par intermédiaire d’une condition aux bords du type Stefan
(probléme de frontiére libre). L'équation de bilan est résolu analytiquement dans 'approximation linéaire,
par une procédure de troncature de modes, ainsi que par la méthode de Galerkin. On obtient ainsi des
informations sur la stabilité du climat actuel par rapport 4 de petits déplacements de la limite de la glace. On
insiste également sur les aspects thermodynamiques, ainsi que sur les échelles de temps caractéristiques de
I’évolution.



A free boundary value problem arising in climate dynamics

EIN FREIES RANDWERTPROBLEM DER KLIMA-DYNAMIK

Zusammenfassung—Es wird ein Warme- und Stoffiibergangsproblem, das von geophysikalischem Interesse
ist, behandelt. Das betrachtete dynamische System umfaBt Atmosphire, Hydrosphire und Kryosphire,
wobei die rdumlichen Freiheitsgrade in vertikaler und horizontaler Richtung punktformig konzentriert
werden. Das reduzierte eindimensionale System wird durch ein einfaches jahreszeitlich gemitteltes
Energiebilanzmodell simuliert unter Beriicksichtigung der Kopplung der beiden vorhandenen Phasen: der
Eisschichten und des Ozeans. Dieses erfolgt konsistent durch Einfiihrung einer Stefan’schen Randbedingung
an der Phasengrenzfliche. Die daraus resultiecrende Gleichgewichtsbedingung wird linearisiert und
analytisch nach dem Galerkin-Verfahren gelost. Die Untersuchung konzentriert sich auf die Stabilitit der
gegenwirtigen klimatischen Verhéltnisse im Hinblick auf kleine Verschiebungen der Eisgrenze. Besonders
hervorgehoben werden sowohl die thermodynamischen Aspekte als auch die fiir die Entwicklung
charakteristischen Zeitrdume.

OJIHA 3AJJAYA CO CBOBOJHON I'PAHHMLIEN, BCTPEUAIOHNIASAICA B JUHAMMKE
KJIMMATA

Annoraums — [1poBe/ieHO HcClieIOBaHNE HHTEPECHOH C reoM3UYECKOH TOUKH 3PEHHUS 3aJaYH O TEIIO-
W MacCOMEpPEHOCE MPH HAJIMYMHM OJHOBPEMEHHO HeCcKOAbKHMX (a3. PaccMaTpuBaeTcs auHamuueckas
CHCTEeMa, BKJIIOYAIoILas aTMochepy, rupocdepy u kpuochepy, B KOTOPOH NPOCTPAHCTBEHHbIE KOOPAH-
HaThl B BEPTHKAJIbHOM M T'OPH3OHTAJIBHOM HANPaBJICHHAX [PeACTaBJEHb! B BUIE OIHOM 0000IIEHHOM
koopauHaThl. [Tonyyennas Takum o6pa3oM OJHOMEPHAs CHCTEMA MOMIEJIUPYETCS IPOCTOMH, YCPEAHEHHOI
10 rogam, MoJeJibio 6asiaHca 3HEPrHH, B KOTOPOH YYHTLIBAETCS B3aMMOJEHCTBHE ABYX (a3: JieasHOM
HOKpoB U oxeaH. CaMOCOTIaCOBAHHOCTb JOCTHIHYTA 33 CYET HCMOJIb3OBAHHMA CTe(GaHOBCKOTO IPAaHHY-
HOTO YCJIOBHMS Ha rpaHuue paszaena ¢a3. [TonyyeHHoe ypaBHeHne GasiaHCa NHHEAPH3OBAHO H PELUEHO
AHAJIUTHYECKH C MOMOLIBIO YCEYEHMs MOJ M HCNOJIb30BaHHA MeToda [anepkuHa. AHanusupyercs
CTabHILHOCTL COBPEMEHHOTO KJIHMATHYECKOTO PEXHMa C Y4€TOM HeGOMbIUMX NepeMELICHAN Ne10BOoM
rpanunbl. Ocoboe BHHMAaHHE YOENEeHO TEPMOJMHAMUYECKHM aCleKTaM, & TAKXKe XapaKTePHCTHYECKHM
BPEMEHHBIM MacILTabaM paccMaTpPHBAEMBIX [IPOLECCOB.
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